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Abstract. The graph-partitioning problem is to divide a graph into several pieces so that the
number of vertices in each piece is the same within some defined tolerance and the number of cut
edges is minimised. Important applications of the problem arise, for example, in parallel processing
where data sets need to be distributed across the memory of a parallel machine. Very effective
heuristic algorithms have been developed for this problem which run in real-time, but it is not
known how good the partitions are since the problem is, in general, NP-complete. This paper reports
an evolutionary search algorithm for finding benchmark partitions. A distinctive feature is the use
of a multilevel heuristic algorithm to provide an effective crossover. The technique is tested on
several example graphs and it is demonstrated that our method can achieve extremely high quality
partitions significantly better than those found by the state-of-the-art graph-partitioning packages.
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1. Introduction

The need for graph-partitioning arises naturally in many applications. For example
in complex finite element & finite volume computational mechanics codes, the
large meshes required are often too big to fit onto serial computers, either because
of memory limitations or computational demands, or both. Distributing a graph
(corresponding to the computational and communication requirements of the
mesh) across a parallel computer so that the computational load is evenly balanced
and the data locality maximised is known as graph-partitioning. It is well known
that this problem is NP-complete (i.e. it is unlikely that an optimal solution can
be found in polynomial time), e.g. [7], so in recent years much attention has been
focused on developing suitable heuristics, and a range of powerful methods have
been devised, e.g. [12].
In this paper we report on a technique, combining an evolutionary search

algorithm together with a multilevel graph partitioner, which has enabled us to
find partitions considerably better than those that can be found by any of the
public domain graph-partitioning packages such as JOSTLE, METIS, CHACO,
etc. We do not claim this evolutionary technique as a possible substitute for the
aforementioned packages; the very long run times (e.g. up to a week) preclude



226 A.J. SOPER ET AL.

such a possibility for the typical applications in which they are used. However
we do consider it of interest to find the best possible partitions and for certain
applications such as circuit partitioning, where the quality of the partition is
paramount, the computational resources required may be completely justified
by the very high quality partitions that the technique is able to find. Even for
applications where the partitioning overhead needs to be as small as possible, such
as parallel scientific computing, we believe the results are useful for benchmarking
purposes. As a consequence we also report on the establishment of a public
domain archive containing what we believe to be the best partitions found so far
for a range of public domain graphs.

1.1. OVERVIEW

The main focus of this paper is to describe a strategy for combining evolutionary
search techniques with a standard graph-partitioning method. A particularly popu-
lar and successful class of algorithms that address the graph-partitioning problem
are known as multilevel algorithms, e.g. [28]. They usually combine a graph
contraction algorithm which creates a series of progressively smaller and coarser
graphs together with a local optimisation method which, starting with the coarsest
graph, refines the partition at each graph level. In Section 2 we outline such an
algorithm and discuss the salient features. We employ the evolutionary search
algorithm by constructing a population of variants of the original graph (differing
from the original only by edge weighting) and then use this multilevel algo-
rithm almost as a ‘black box’ operator to determine their fitness by computing
a partition of each which hopefully will also be a good partition of the origi-
nal graph. The population evolves either by individual members mutating or by
several members crossing with each other to generate a different (and hopefully
fitter) child. The details of this approach are described in Section 3, in particu-
lar the crossover & mutation operators (Sections 3.2 and 3.3). Related work is
discussed in Section 3.5. We have conducted many experiments to test the tech-
nique and in Section 4 present some of the results including benchmarks of public
domain partitioning packages (Section 4.1) and tests for the effectiveness of the
evolutionary search (Section 4.2). Finally, in Section 5, we summarise the work,
present some conclusions and list some suggestions for further research.
Note that although we describe a serial version of the multilevel algorithm, in

principle, the same strategy could be used to enable a parallel version of the code
by employing the parallel version of the multilevel algorithm, [30]. Alternatively,
a processor farm could be utilised by distributing each partitioning calculation to
an idle processor. However we have not implemented either strategy and indeed
it might be difficult to obtain parallel resources for such long run-times.
The principal innovation described in this paper is the combination of

evolutionary search techniques and a multilevel graph-partitioner. Most impor-
tantly we have devised and implemented new crossover and mutation operators
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which can be applied to partitions with the aim of improving the overall fitness
of each successive generation.

1.2. NOTATION AND DEFINITIONS

Let G=G�V �E� be an undirected graph of vertices V , with edges E. We assume
that both vertices and edges can be weighted and that �v� denotes the weight of
a vertex v and similarly for edges and sets of vertices and edges. Given that
the mesh needs to be distributed to P processors, define a partition 	 to be a
mapping of V into P disjoint subdomains Sp such that ∪PSp=V . The weight
of a subdomain is just the sum of the weights of the vertices in the subdomain,
�Sp�=

∑
v∈Sp �v� and we denote the set of inter-subdomain or cut edges (i.e. edges

cut by the partition) by Ec.
In the context of partitioning a mesh for a parallel application, the aim is

to find a partition which evenly balances the load or vertex weight in each
subdomain whilst minimising the communications cost. To evenly balance the
load, the optimal subdomain weight is given by S̄ =��V �/P� (where the ceiling
function �x� returns the smallest integer greater than x) and the imbalance is
then defined as the maximum subdomain weight divided by the optimal (since
the computational speed of the underlying application is determined by the most
heavily weighted processor). There is some discussion about the most appropriate
metric for partitioning, e.g. [11], and indeed it is unlikely that any one metric is
appropriate, however, it is common practice in graph-partitioning to approximate
the communications cost by �Ec�, the weight of cut edges or cut-weight. The usual
(although not universal) definition of the graph-partitioning problem is therefore
to find 	 such that �Sp�� S̄ and such that �Ec� is (approximately) minimised.

2. Multilevel Graph-Partitioning

In recent years it has been recognised that an effective way of both speeding
up graph-partitioning techniques and/or, perhaps more importantly, giving them
a global perspective is to use multilevel techniques. The idea is to match pairs
of vertices to form clusters, use the clusters to define the vertices of a new
graph and recursively apply this procedure until the graph size falls below some
threshold. The coarsest graph is then partitioned (possibly with a crude algo-
rithm) and the partition is successively refined on all the graphs starting with
the coarsest and ending with the original. This sequence of contraction followed
by repeated expansion/optimisation loops is known as the multilevel paradigm
and has been successfully developed as a strategy for overcoming the localised
nature of the Kernighan-Lin (KL) [16], and other optimisation algorithms. The
use of multilevel combinatorial refinement for partitioning was first proposed by
both Hendrickson and Leland [12], and Bui and Jones [3], and was inspired by
Barnard and Simon [2], who used a multilevel numerical algorithm to speed up
spectral partitioning.
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2.1. THE MULTILEVEL ALGORITHM

2.1.1. Graph Contraction

To create a coarser graph Gl+1�Vl+1�El+1� from Gl�Vl�El� we find a maximal
independent subset of graph edges, or a matching of vertices, and then collapse
them. The set is independent if no two edges in the set are incident on the same
vertex (so no two edges in the set are adjacent), and maximal if no more edges
can be added to the set without breaking the independence criterion.Having found
such a set, each selected edge is collapsed and the vertices, u1�u2∈Vl say, at either
end of it are merged to form a new vertex v∈Vl+1 with weight �v�=�u1�+�u2�.
The problem of computing a matching of the vertices is known as the maximum

cardinality matching problem. Although there are optimal algorithms to solve this
problem, they are of at least O�V 2�5�, e.g. [21]. Unfortunately this is generally
too slow for partitioning and, since it is not too important for the multilevel
process to solve the problem optimally, we use a variant of the edge contraction
heuristic proposed by Hendrickson and Leland [12]. Their method of constructing
a maximal independent subset of edges is to create a randomly ordered list
of the vertices and visit them in turn, matching each unmatched vertex with
an unmatched neighbouring vertex (or with itself if no unmatched neighbours
exist). Matched vertices are removed from the list. If there are several unmatched
neighbours the choice of which to match with can be random, but it has been
shown by Karypis and Kumar [14], that it can be beneficial to the optimisation to
collapse the most heavily weighted edges and our matching algorithm uses this
heuristic.

2.1.2. The Initial Partition

Having constructed the series of graphs until the number of vertices in the coarsest
graph is smaller than some threshold, the normal practice of the multilevel strategy
is to carry out an initial partition. Here, following Gupta [10], we contract until the
number of vertices in the coarsest graph is the same as the number of subdomains,
P, and then simply assign vertex i to subdomain Si.

2.1.3. Partition Extension

Having optimised, the partition on a graph Gl, the partition must be extended
onto its parent Gl−1. This is a trivial process; if a vertex v∈Vl is in subdomain
Sp then the matched pair of vertices that it represents, v1�v2∈Vl−1, will be in Sp.

2.2. THE ITERATIVE OPTIMISATION ALGORITHM

The iterative optimisation algorithm that we use at each graph level is a multi-way
variant of the Kernighan-Lin (KL) bisection optimisation algorithm. The algo-
rithm, as is typical for KL type algorithms, has inner and outer iterative loops with
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the outer loop terminating when no migration takes place during an inner loop.
The vertices are ranked by gain (the potential improvement in the cost function,
in this context the cut-weight) and the inner loop examines vertices, highest gain
first, and, provided the balance constraint is not broken, transfers them between
subdomains if an improvement to the cost function accrues. The algorithm also
has a limited ability to escape local minima by marking vertices with a negative
gain for transfer and subsequently migrating a group of them if the aggregate
transfer results in an improved cost. It is fully described in [29].
Our implementation also uses bucket sorting, the linear time complexity

improvement introduced to partitioning by Fiduccia and Mattheyses [6], which we
have extended for use with non-integer gains by integer scaling. The bucket sort
is an essential tool for the efficient and rapid sorting and adjustment of vertices
by their gain. The idea is that all vertices of a given gain g are placed together
in an unsorted ‘bucket’ which is ranked g; finding a vertex with maximum gain
then simply consists of finding the (non-empty) bucket with the highest rank and
picking a vertex from it. If the vertex is subsequently transferred between sub-
domains then the gains of adjacent vertices are adjusted and the list of vertices
which are candidates for migration (re)sorted by gain. Using a bucket sort for
this operation simply requires recalculating the gain of each affected vertex and,
if different, transferring it to the appropriate bucket.
The only difficulty in adapting this procedure for use with the evolutionary

algorithm is that we wish to add small non-integer biases to the edge weights
to influence the partitioner and as a result the gains are also real (non-integer)
numbers. In fact the solution we use is to give each bucket an interval of gains
rather than a single integer, e.g. the bucket ranked 1 could contain any vertex
with gain in the interval �0�5�1�5�. However, the issue of scaling then arises since
the biases are often very small quantities. Fortunately, we can easily calculate
the maximum possible gain by finding the vertex in the graph, v̄∈G, with the
largest sum of edge weights. The maximum possible gain, gmax, would then occur
if v̄ insubdomain Sp say, were entirely surrounded by neighbours in different
subdomains. The value for gmax is then given by gmax=

∑
v′∈��v̄� ��v̄�v′�� (where

��v̄� is the set of vertices v′ ∈V adjacent to v̄) and the minimum gain is −gmax.
This means we can easily choose the number of buckets, B say, and scale the gain
accordingly so that for a gain g we calculate the appropriate bucket by finding
the integer part of

gB

gmax−�−gmax�
= gB

2
∑

v′∈��v̄� ��v̄�v′��
�

The number of buckets, B, which is inversely proportional to the length of each
interval, should be chosen so that it is large enough to distinguish between
reasonably different gains but not so large that every different gain value requires
a different bucket (with the consequence that the search for a particular bucket
becomes inefficient). The experiments carried out here all used a scaling which
allowed a maximum of B=1�000 buckets and we believe that this is large enough
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to sufficiently distinguish between gains arising from different biases generated
by the crossover & mutation operators (Sections 3.2 and 3.3). Finally note that
the buckets are stored in a binary tree which allows O�logB� searches for the
highest ranked nonempty bucket and that the algorithm simply picks the first
vertex in the bucket rather than scanning the entire bucket for the precise vertex
with highest gain.

3. Combining Evolutionary Search with the Multilevel Graph
Partitioner

Evolutionary search is a stochastic search technique that generates new points (or
individuals which in our case are partitions) in a search space using information
from a finite population of already evaluated points. Typically a new population
of equal size to the current population is generated, which in turn provides the
basis for producing a further population (termed a generation) and so on. This
process is given direction by selecting more information from the fitter individuals
in the current population when producing new search points, [9]. In this context
the fitness refers to the partition quality and takes account of the number of cut
edges and the imbalance.
Each new search is produced by one of two operations: crossover which

combines information from two or more randomly selected individuals in the
current generation, and mutation which modifies a single, randomly selected,
individual. The construction of successful crossover and mutation operators is
problem specific and often complex, especially where individuals are subject to
constraints (as for partitioning) so that information from different individuals
cannot be arbitrarily combined or modified. Further, the information needs to be
effectively exploited so that new individuals result that are fitter than the current
fittest with sufficient probability even when the current generation is already very
good, [1].
Evolutionary search algorithms have recently been successfully applied to a

diverse set of problems providing useful examples of crossover and mutation
operators which provide a guide for developing such operators for new prob-
lems. The operators described in this paper extend an approach to the Travelling
Salesman Problem (TSP) [26], and the Constrained Minimum Spanning Tree
Problem (CMSTP) [23], both of which require a search for a set of links satisfying
constraints (forming a tour for the TSP) and for which the sum of their costs
is a minimum. Clearly the graph-partitioning problem is of similar character.
The approach normally works by first defining a parametric representation

for candidate tours (or CMSTs) upon which the many crossover and mutation
operators available for parametric problems can then act, [9]. The parametric
representations are produced by ‘biasing’ the link costs, i.e. adding spurious
positive values to the cost of each link, and then applying a particular heuristic
algorithm to produce the corresponding tour or CMST. The heuristic algorithm
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used should give good solutions for a large range of different problems (sets of
link costs) and in this context is the multilevel partitioner. We use biased edge
weights to alter the output of this partitioner, but form our genetic operators
differently.

3.1. INTERACTION WITH THE MULTILEVEL PARTITIONER

We first describe how the partitioner should respond to a graph with biased edge
weights. In fact the multilevel partitioner used (as described in Section 2) is known
as JOSTLE and for simplicity we shall henceforth refer to it as such, although
in principle the evolutionary search should work with any graph-partitioning
heuristic which accepts real (non-integer) edge weights. Indeed by suitable integer
scaling the approach should work with the more common partitioners which are
restricted to integer weights.
The basic idea is that each vertex is assigned a bias ��0�, and each edge a

dependent weight of unity plus the sum of the biases of its end vertices. JOSTLE
responds to these edge weights so that:

(a) when contracting a graph, heaviest edges are collapsed first (subject to their
being independent);

(b) when performing iterative optimisation, vertex gains are calculated using the
biased edge weights.

When applying JOSTLE to a graph with biased edge weights, the general effect
will be that vertices with a small bias are more likely to appear at the boundary
of a subdomain than those with a large one, and that edges with lower biased
weight are more likely to be cut.
To generate each new offspring we construct a set of biases from one or more

existing parent partitions and then use JOSTLE to create a new partition. The
bias values are chosen carefully (although with a randomised component) so
that JOSTLE’s ability to produce partitions of good quality (with respect to the
unweighted graph) is not too much impaired, while at the same time there is
information transfer from the parents to the offspring. Since the bias values are
discarded after a new offspring has been produced, the evolutionary algorithm
described here is not a traditional genetic algorithm since no representation (or
genotype) is maintained, as distinct from an actual partition.

3.2. CROSSOVER OPERATOR

We create a new set of biases from a selected number of parent partitions as
follows:

For each vertex in the graph, examine whether in two or more of the parent
partitions that vertex is a border vertex (ends a cut edge). If so, assign the vertex
a bias value chosen randomly and uniformly from the range �0�0�01�. Otherwise
assign a bias value of 0�1 plus a random number chosen in the same range.
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Border vertices common to two or more parents will occur where either identical
or adjacent cut edges also occur. Either way we take this as evidence that the
vertex should remain as a border one in the child—under the assumption that the
presence of this particular border vertex is a contributing factor to the fitness of
two or more fit parents. Hence a very small bias is assigned. We then make all
other vertices less likely to become border vertices by assigning them a larger
bias value. Since in both cases the bias value is small—much less than the unit
weight of an edge—JOSTLE will produce a partition for the most part optimised
with respect to the true edge weights. Hence the requirement for a successful
crossover operator to transfer information is fulfilled. Finally, at each mating two,
three or four mates are randomly chosen to crossover together, a range found to
work well empirically.
Figure 1 illustrates and motivates the aims of the crossover operator.

Figures 1(a) and 1(b) show two possible (perfectly balanced) partitions of the
example graph whilst Figure 1(d) shows the optimal partition of this graph into
4 subdomains. In Figure 1(c) the border vertices common to both partitions (a)
and (b) are shown ringed. Using the crossover scheme, despite a certain amount
of random variation, the biased graph that is input to JOSTLE will have edges
between two ringed vertices with the lightest weights whilst edges between two
unringed vertices will be the heaviest. JOSTLE attempts to minimise the total
weight of cut edges and so is more likely to cut between pairs of ringed vertices
and hopefully would produce a solution closer to or the same as the optimal. How-
ever the Figure also illustrates the dangers of making the biasing too extreme.
The two ringed vertices in Figure 1(c) indicated by arrows are not border vertices
in the optimal partition. Thus, if the biasing is too heavy, JOSTLE is likely to
find a good partition of the biased graph but which does not correspond to a good
partition of the original. In this way the crossover operator aims to retain infor-
mation about common strengths of two or more parents whilst allowing further
investigation of the search space.
Finally notice that Figure 1 (for reasons of space) only illustrates the case

when two parents are crossed and we look for border vertices common to both
parents. In fact the operator can be even more powerful when combining three
or more partitions as we can achieve genuinely constructive composition. For
example with three parents A, B and C, the resulting biased graph will show
common border vertices between A and B, B and C, and C and A which means

Figure 1. An illustration of the crossover operator: (a) and (b) partitions of an example graph, (c) com-
mon border vertices from these two partitions, (d) the optimal partition into 4 subdomains.
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that the resulting partition will hopefully retain the best parts of all three of these
combinations.

3.3. MUTATION OPERATOR

We create a new set of biases from a parent partition as follows:
For each vertex in the graph examine whether it is a border vertex, the

neighbour of a border vertex or the neighbour of a neighbour of a border vertex.
If so, assign the vertex a bias value chosen randomly and uniformly from the
range �0�0�01�. Otherwise assign a bias value of 2�0 plus a random number
chosen in the same range.
Considering the vertex biases as forming a landscape over the graph with the

bias at any vertex giving its height, the effect will be a deep, flat-bottomed trench
along the partition boundaries. The trench is considered deep since edge weights
within the trench will be 4.0 different from those outside, so that JOSTLE’s
optimisation stage will have a strong tendency to place boundaries within the
trench. In addition, since the edge weight biases within the trenches are small
compared with unity, the true edge weight, JOSTLE can still successfully optimise
within the trenches with respect to the true total edge weight. This operator
is partially motivated by the fact that certain graphs, and in particular those
representing unstructured meshes, often show considerable regularity, especially
locally in the form of translational symmetry, so that good quality partition
boundaries are often found, nearby and locally parallel to each other. The choice
of the bias value, 2.0, was again chosen by experimentation.
Figure 2 illustrates the mutation operator and shows (a) a partition of the given

graph and (b) the optimal partition into two subdomains of this graph. In Figure
2(a) we have also ringed all the border vertices, neighbours of border vertices and
neighbours of neighbours of border vertices. As for Figure 1 the lightest edges
of the resulting biased graph are those between two ringed vertices whilst those
between two unringed vertices will be substantially heavier.

3.4. GENETIC ALGORITHM PARAMETERS

The fitness function allows the evolutionary search algorithm to rank the partitions
by their quality and the fitness of a partition was defined to be −C� where C is

Figure 2. An illustration of the mutation operator: (a) an example partition with border vertices and
their near neighbours ringed, (b) the optimal partition into 2 subdomains.
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the number of cut edges and � the imbalance. The fitness function thus imposes a
soft, but heavy penalty on partitions with greater imbalance; sufficiently heavy so
that partitions within the balance constraint eventually dominate the population
as evolutions progress.
Due to the size of the meshes and the time required to execute JOSTLE, a

fairly small population size of 50 is used. Each new generation is created as
follows: 50 new offspring are produced by either crossover or mutation at a ratio
of 7:3. Mating groups of individuals for crossover and candidates for mutation are
selected randomly from the current generation, but with each parent participating
in at least one trial. The union of the sets of offspring and parents are then ranked
by fitness and the best 50 form the new generation. The fact that members of a
population are only ever discarded when offspring of greater fitness are generated
is known as an elitist strategy, [9]; it is appropriate in this case because most of
the offspring generated are not of very high quality, [5].
The random initial population was generated by (for each individual) assigning

to every vertex bias values chosen randomly and uniformly from [0, 0.1], and
then using JOSTLE to generate a partition. 1000 generations were allowed for
each run of the genetic algorithm, giving 50,000 evaluations of JOSTLE.
The genetic algorithm described here is a very simplified instance of the CHC

Adaptive Search Algorithm, [5], but lacks incest prevention and restarts.

3.5. RELATED WORK

There are a number of papers about topics related to the work presented here.
Amongst genetic algorithm approaches, the most common is based on a direct
encoding, i.e. the subdomain membership of each vertex is explicitly represented
by the value of one gene. A linear chromosome is formed by ordering and con-
catenating the genes, and crossover is of the normal type (i.e. based on natural
evolutionary processes, [9]). After crossover, offspring are normally improved by
local optimisation before being placed in the succeeding generation. In chrono-
logical order, this approach has been used by: Mansour and Fox [19], who pro-
gressively enforced the equi-partition constraint using a penalty term; Talbi and
Bessiere [25], who employed a cellular population structure for the genetic algo-
rithm; and Bui and Moon [4], who performed chromosomal alignment before a
5-point crossover and local optimisation based on Kernighan-Lin, Gil and Ortega
have performed circuit partitioning using the direct encoding [8], whilst Kang and
Moon [13], and Kim and Moon [18], have improved the local optimisation algo-
rithms and performed more extensive tests on larger graphs (up to 5,000 vertices)
divided into up to 32 subdomains.
von Laszewski has used an alternative ‘structural genetic operator’ which copies

one entire subdomain from one parent into the other to form an offspring; this was
tested on graphs of up to 1000 vertices, [27]. Khan and Topping partitioned very
small meshes in parallel finite element analysis using a genetic algorithm [17],
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and Muhlenbein et al. have experimented on small graphs (100 vertices) with
a network algorithm which ‘evolves’ a partition by simulating deterministic,
differential equations [20].
In contrast to the above, the work described here uses a multilevel optimisation

scheme (JOSTLE) as the basis of crossover and mutation operators for acting on
partitions of unstructured meshes.

4. Experimental Results

We have implemented the algorithms described here within the framework of
JOSTLE, a mesh partitioning software tool developed at the University of Green-
wich and freely available for academic and research purposes under a licensing
agreement1. The experiments were carried out on a variety of different machines;
with its very long runtimes (of several days in the case of the larger graphs), the
evolutionary search approach can soak up CPU cycles and the tests were run so
as to use up any spare capacity in the system. As a result we have not measured
runtimes.
The test graphs have been chosen to be a representative sample of small to

medium scale real-life problems (mostly mesh-based) and include both 2D and
3D examples of nodal graphs (where the mesh nodes are partitioned) and dual
graphs (where the mesh elements are partitioned). In addition there is a 3D
semi-structured graph, cti, which is unstructured in the x−y plane but extended
regularly along the z-axis. Finally the test suite includes three non mesh-based
graphs (add32, vibrobox, bcsstk32) which arise from various scientific computing
applications2. None of the graphs have either vertex or edge weights; such graphs
are not widely available since most applications do not accurately instrument
costs and it is difficult to draw meaningful conclusions from the few examples that
we have access to. Table 1 gives a list of the graphs, their sizes, the maximum,
minimum & average degree of the vertices and a short description. As the graphs
are not weighted, the number of vertices in V is the same as the total vertex
weight �V � and similarly for the edges E.
It has been noted for some time, e.g. [22], that graph-partitioning algorithms can

often find higher quality partitions if the balancing constraint is relaxed slightly.
Indeed some of the public domain graph-partitioning packages such as JOSTLE
& METIS have an in-built, although adjustable, imbalance tolerance of 3% (i.e.
the largest subdomain is allowed to be up 1.03 times the size of the maximum
allowed for perfect balance). We have tested the evolutionary algorithm with
various tolerances but here restrict ourselves to reporting 3% imbalance results
(further results for 0% imbalance can be found in [24]).

1available from http://www.gre.ac.uk/jostle
2the graphs are available from the Florida sparse matrix collection ftp://ftp.cis.ufl.edu/pub/umfpack/

matrices/
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Table 1. A summary of the test graphs

Size Degree

Graph V E Max Min Avg Type

uk 4824 6837 3 1 2.83 2D dual graph
add32 4960 9462 31 1 3.82 32-bit adder (electronic circuit)
crack 10240 30380 9 3 5.93 2D nodal graph
wing-nodal 10937 75488 28 5 13.80 3D nodal graph
vibrobox 12328 165250 120 8 26.81 vibroacoustic matrix
4elt 15606 45878 10 3 5.88 2D nodal graph
cti 16840 48232 6 3 5.73 3D semi-structured graph
cs4 22499 43858 4 2 3.90 3D dual graph
bcsstk32 44609 985046 215 1 44.16 3D stiffness matrix
t60k 60005 89440 3 2 2.98 2D dual graph
wing 62032 121544 4 2 3.92 3D dual graph
brack2 62631 366559 32 3 11.71 3D nodal graph

Table 2 shows the results of using the evolutionary search algorithm for four
values of P (the number of processors/subdomains). The table shows the number
of cut edges or cut-weight which we denote CE (the subscript E denoting the
evolutionary algorithm).

4.1. BENCHMARKING OF PUBLIC DOMAIN PACKAGES

To assess the quality of the partitions, we have compared the results in Table 2
with those produced by several public domain partitioning packages including
JOSTLE [29], METIS [15], and CHACO [12]. In all cases we have used the most
up to date versions at the time of writing, JOSTLE 2.2 (March 2000), METIS 4.0
(September 1998) and CHACO 2.0 (October 1995). For METIS the algorithm
chosen was kmetis the multilevel k-way scheme, and for CHACO we used the

Table 2. The results of the evolutionary search algorithm showing
the cut-weight CE

Graph P=4 P=8 P=16 P=32

uk 41 83 157 266
add32 33 69 117 212
crack 361 676 1083 1699
wing-nodal 3590 5424 8361 12024
vibrobox 19245 24874 33676 43091
4elt 320 532 916 1540
cti 927 1716 2859 4438
cs4 936 1488 2204 3117
bcsstk32 9992 21307 38929 64433
t60k 215 469 886 1478
wing 1672 2551 4015 6039
brack2 2873 7114 12009 17952
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Table 3. A comparison of cut-weight results for JOSTLE, CJ , against those of
the evolutionary search algorithm, CE

P=4 P=8 P=16 P=32

Graph CJ

CJ

CE

CJ

CJ

CE

CJ

CJ

CE

CJ

CJ

CE

uk 71 1.73 106 1.28 180 1.15 315 1.18
add32 41 1.24 106 1.54 180 1.54 257 1.21
crack 413 1.14 751 1.11 1191 1.10 1804 1.06
wing-nodal 4055 1.13 5965 1.10 8947 1.07 12635 1.05
vibrobox 21844 1.14 30247 1.22 34521 1.03 45374 1.05
4elt 434 1.36 656 1.23 1012 1.10 1687 1.10
cti 1329 1.43 2086 1.22 3262 1.14 4683 1.06
cs4 1162 1.24 1588 1.07 2477 1.12 3330 1.07
bcsstk32 14887 1.49 25343 1.19 48395 1.24 74391 1.15
t60k 229 1.07 530 1.13 984 1.11 1588 1.07
wing 1844 1.10 2911 1.14 4681 1.17 6404 1.06
brack2 2999 1.04 7808 1.10 13164 1.10 19238 1.07

Average 1.26 1.19 1.16 1.10

multilevel KL method with recursive bisection and chose a coarsening threshold
of 200.
Table 3 shows a comparison of the cut-weight results for the public domain

version of JOSTLE compared to the evolutionary search algorithm. For each
value of P, the first column shows the JOSTLE cut-weight results, CJ whilst the
second column compares the results from JOSTLE scaled by the results from
Table 2, CJ/CE . Thus the figure of 1.73 for the uk graph and P=4 mean that the
evolutionary algorithm was able to find a partition 73% better than JOSTLE in
this case (although this is an extreme example). As can be seen JOSTLE provides
partition qualities which are always worse, however this is hardly surprising since
the JOSTLE algorithms lie at the heart of the evolutionary search scheme and
JOSTLE is called 50,000 times for each experiment. Nonetheless it is interesting
to see just how much better the partitions can be; the average difference in the
quality ranges from 26% to 10% as P increases and can be as bad as 73%.
Note that differences in quality tend to diminish as P increases. It is tempting

to speculate that this is because the margins for difference decrease as the number
of vertices per subdomain �≈V/P� decreases. Indeed in the limit where V =P
the only balanced partition (for an unweighted graph at least) is to put one vertex
in each subdomain and so the differences vanish altogether.
We do not present detailed figures here for METIS and CHACO (although they

can be found in [24]) but broadly the conclusions are the same as for JOSTLE.
Thus METIS produces results which are on average from 37% to 14% worse than
the evolutionary algorithm as P increases. Strictly speaking 5 out of the 48 results
should not be admitted to this averaging as METIS failed to achieve the required
imbalance and in the worst case (add32, P=32) the actual imbalance achieved
was only 8.4%. Other than that it is difficult to spot any trends in the results other
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than that METIS does particularly badly on the add32 graph (in one extreme
case, P=4 the METIS cut-weight is over three times worse than the evolutionary
algorithm) and best of all on the wing-nodal graph.
Similarly for CHACO, the average difference in the quality ranges from 29%

to 14% as P increases, although CHACO uses recursive bisection and thus
produces partitions with perfect balance (i.e. 0% imbalance tolerance) and so the
comparisons are with the corresponding 0% results for the evolutionary scheme.
CHACO does particularly well on the cti graph, perhaps as a result of its semi-
structured nature which may suit the recursive bisection approach.

4.2. THE EFFECTIVENESS OF THE EVOLUTIONARY SEARCH ALGORITHM

It is of interest to ask how much the evolutionary search procedure contributes
to finding the best partitions during an optimisation run. Each such run consists
of 50,000 calls to JOSTLE, each with a slightly different graph (in terms of the
edge weights) and may run for hours or even days and hence one would certainly
expect the evolutionary approach to find higher quality partitions than any of
the packages, all of which usually take less than a minute (and often less than
a second) and only have one partitioning attempt. Therefore, with the aim of
quantifying the added value of the evolutionary approach, we have run all the
tests using graph variants with purely random biases to weight the edges. These
biases were generated as if each new population were the initial one and had
no dependence on the previous population (the random generation of an initial
population is described in Section 3.4).
Figure 3 shows plots of the evolution of solution quality against the number of

trials conducted for P=8 and P=32. Each point on the curves is calculated by
averaging, for the entire test suite, the percentage excess in cut-weight over that
for the best-known partition. The first 50 trials of both methods should produce
identical results (discounting random noise) and hence the curves start close
together. However, as can be seen, they rapidly separate and the evolutionary
approach is shown to impart an advantage to solution quality which, although
only small in absolute size, is nonetheless distinctive.

Figure 3. Plots of solution quality evolution against the number of trials.
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The plots also give some indication of parameterisation for the evolutionary
scheme. Thus the turning point in the gradient is between 5,000–10,000 trials
suggesting that the algorithms should be applied for at least this long (100–
200 generations) before the ‘law of diminishing returns’ starts to apply. Indeed
the evolutionary algorithm does not even appear to have reached asymptotic
convergence after 50,000 trials and so it could be legitimately argued that the
evolutionary scheme could make use of further trials. In fact this is the reason
why the curve fails to reach 0 as, for some of the graphs, we have generated
better results than those reported here by running the algorithm for longer.

5. Summary and Future Research

We have described a new approach for addressing the graph-partitioning problem
which combines an evolutionary search algorithm with a multilevel partitioner.
Although not a practical method for applications in which the partition must be
found rapidly, such as runtime partitioning of unstructured meshes, the approach
is very successful at computing very high quality benchmark partitions especially
when compared against state-of-the-art partitioning packages such as JOSTLE
and METIS.
Despite the success of the testing we have not particularly addressed the

partitioning of arbitrary graphs and have for the most part considered graphs
arising from unstructured meshes. These tend to contain local connection patterns
which are relatively homogeneous throughout the graph and, as such, tend to
allow small incremental partition improvements. This is a boon to the crossover
and mutation operators that we have devised and lead us to speculate that perhaps
the technique might not be so useful on completely arbitrary graphs. However we
believe that there is a large class of graphs with genuine applications for which
the techniques will work.
We aim to investigate the techniques further by performing tests to quantify the

performance of the evolutionary algorithm and to understand how it depends on
the relative biases of boundary and interior vertices, and the number of parents
during crossover. We are also very interested in looking at different types of
application to which the strategy can be applied, and in particular those in which
the long runtimes might not be considered a drawback provided the resulting
partition was of the highest quality.
Finally, as a part of this work we have set up a public domain archive of

various graphs together with the best partitions of them that we have been able to
find. The archive is accessible via the world wide web at http://www.gre.ac.uk/∼
c.walshaw/partition and we invite researchers in the field to submit graphs
and/or partitions for inclusion there. In particular the aim is to provide a bench-
mark against which partitioning algorithms can be tested and as a resource for
experimentation.
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